
Wavefront and Java3D .obj Format

The Wavefront .obj file format is a standard 3D object file format created for use with
Wavefront's Advanced Visualizer™ and available for purchase from Viewpoint
DataLabs, as well as other 3D model companies. Object Files are text based files
supporting both polygonal and free-form geometry (curves and surfaces). The Java
3D .obj file loader supports a subset of the file format, but it is enough to load almost
all commonly available Object Files. Free-form geometry is not supported.
The following text is close to the description of the .obj file format in the Sun Java3D
documentation.
The Object File tokens currently supported by the JavaView loader are listed below.
Unknown tokens are skipped without affecting the reading process.

some text
Line is a comment until the end of the line
v float float float
A single vertex's geometric position in space. The first vertex listed in
the file has index 1, and subsequent vertices are numbered
sequentially.
vn float float float
A normal. The first normal in the file is index 1, and subsequent normals
are numbered sequentially.
vt float float
A texture coordinate. The first texture coordinate in the file is index 1,
and subsequent textures are numbered sequentially.
f int int int ...
or
f int/int int/int int/int . . .
or
f int/int/int int/int/int int/int/int ...
A polygonal face. The numbers are indexes into the arrays of vertex
positions, texture coordinates, and normals respectively. A number may
be omitted if, for example, texture coordinates are not being defined in
the model.
There is no maximum number of vertices that a single polygon may
contain. The .obj file specification says that each face must be flat and
convex. In JavaView polygonal face may be triangulated.

Poser 3 only uses a subset of the full OBJ file format. Here's everything you need to
know about OBJ files if your just using Poser. This document leaves out all non-
Poser usable commands and options so you aren't confused about things you'll
never need. I recommend reading this tutorial, then opening up a couple OBJ files
and checking them out, then rereading this tutorial, and things should start to fall in
place.

The OBJ file format is a text file format, which means you can edit OBJ files in a
text editor if you are hard-core. Unfortunately, the original specification didn't seem
to state what the end of line character should be, so some tools use carriage-
returns and some use linefeeds. You may have to convert the end of line characters
depending on which tools you are reading the OBJ file in from. (Most notably the
OBJIMP plugin for 3DS MAX will crash when reading in any of the OBJ files that
shipped with Poser.) Also your Windows text editors may think the files are binary
because of this.

The first character of each line specifies the type of command. If the first character
is a pound sign, #, the line is a comment and the rest of the line is ignored. Any
blank lines are also ignored. The file is read in by a tool and parsed from top to
bottom just like you would read it. In the descriptions that follow, the first character
is a command, followed by any arguments. Anything shown in square brackets is
optional.

a comment line

These are always ignored. Usually the first line of every OBJ file will be a comment
that says what program wrote the file out. Also, its quite common for comments to
contain the number of verticies and/or faces an object used.

v x y z

The vertex command, this specifies a vertex by its three coordinates. The vertex is
implicitly named by the order it is found in the file. For example, the first vertex in
the file is referenced as '1', the second as '2' and so on. None of the vertex
commands actually specify any geometry, they are just points in space.

vt u v [w]

The vertex texture command specifies the UV (and optionally W) mapping. These
will be floating point values between 0 and 1 which say how to map the texture.
They really don't tell you anything by themselves, they must be grouped with a
vertex in a 'f' face command.

vn x y z

The vertex normal command specifies a normal vector. A lot of times these aren't
used, because the 'f' face command will use the order the 'v' commands are given

to determine the normal instead. Like the 'vt' commands, they don't mean anything
until grouped with a vertex in the 'f' face command.

f v1[/vt1][/vn1] v2[/vt2][/vn2] v3[/vt3][/vn3] ...

The face command specifies a polygon made from the verticies listed. You may
have as many verticies as you like. To reference a vertex you just give its index in
the file, for example 'f 54 55 56 57' means a face built from vertecies 54 - 57. For
each vertex, there may also be an associated vt, which says how to map the texture
at this point, and/or a vn, which specifies a normal at this point. If you specify a vt or
vn for one vertex, you must specify one for all. If you want to have a vertex and a
vertex normal, but no vertex texture, it will look like: 'f v1//vt1'. The normal is what
tells it which way the polygon faces. If you don't give one, it is determined by the
order the verticies are given. They are assumed to be in counter-clockwise
direction. If you aren't using vn's to specify the normal and you wanted to 'flip the
normal' you would reverse the order of the verticies. In most 3D programs, if the
normal points the wrong way, there will appear to be a hole in the object. Luckily,
Poser 3 renders both sides of a polygon, so even if you are editing something in
another program that looks like it has holes, they will effectively go away inside
Poser (NOTE: I read that somewhere, but haven't personally confirmed that fact.)
One more thing, if you ever see a negative v, vt, or vn, that is a relative offset. It
means go back that many verticies from where you are now in the file to find the
vertex. This is part of the OBJ file spec, but I haven't seen any Poser OBJs that use
it.

g name

The group name command specifies a sub-object grouping. All 'f' face commands
that follow are considered to be in the same group.

usemtl name

The use material command lets you name a material to use. All 'f' face commands
that follow will use the same material, until another usemtl command is
encountered. For all of the Poser OBJ files I've seen, all 'g' commands should be
followed by a 'usemtl' command.

Remember that for verticies, they can be interspersed throughout the file, only the
order they appear makes a difference. The faces can also be spread throughout the
file, except they must follow the verticies they use (I think), and they will be part of
whichever group and/or material they follow. That said, most OBJ files follow a
consistant layout. Now the 'normal' layout of the file will be:

comment about what application generated this file.
all of the 'v' commands will be listed
v x y z
v ...
all of the 'vn' commands will be listed, although most Poser OBJ files
do not use the 'vn' commands
vn x y z

vn ...
all of the 'vt' commands will be listed
vt x y z
vt ...
the object and its material will be set
g object
usemtl material
all of the 'f' commands are listed
f 1/1 2/2 3/3 4/4
f

Additional Items:

If you had two OBJ files and wanted to merge them, you can cut all the 'v', 'vt', and
'vn' commands from the second file and paste them at the end of the first. However,
you cannot just copy over the 'f' commands, because they will have to have all their
verticies offset. I'm thinking there has to be a tool out there somewhere that will do
this for you, but I don't know of any.

Hair objects with separate pieces like the ponytails that have a hairtie that can be
colored separately, are actually a single group. They use additional usemtl
commands to perform their magic. You can setup the additional material
parameters in the .hr2 file (MAC). Example OBJ:

v x y z
v ...
g hair
usemtl hair
f 1 2 3 4
f ...
there is NOT another g command here
usemtl hairTie
f 10 11 12 13
f ...

s groupNumber

Poser 2 hair objects sometimes use the 's' command to set a smoothing group. The
groupNumber is used to make separate groups. All subsequent 'f' commands are in
the same smoothing group until another 's' command is encountered. These also
have some kind of interaction with vertex normals, but I haven't explored it fully
because apparently as of Poser 3, it doesn't use the 's' command anymore.

